翻訳と辞書
Words near each other
・ Generalized lifting
・ Generalized linear array model
・ Generalized linear mixed model
・ Generalized linear model
・ Generalized logistic distribution
・ Generalized Lotka–Volterra equation
・ Generalized lymphadenopathy
・ Generalized map
・ Generalized Maxwell model
・ Generalized mean
・ Generalized method of moments
・ Generalized minimal residual method
・ Generalized minimum-distance decoding
・ Generalized Multi-Protocol Label Switching
・ Generalized multidimensional scaling
Generalized multivariate log-gamma distribution
・ Generalized Music Plug-in Interface
・ Generalized Newtonian fluid
・ Generalized nondeterministic finite automaton
・ Generalized normal distribution
・ Generalized other
・ Generalized Ozaki cost function
・ Generalized p-value
・ Generalized Pareto distribution
・ Generalized permutation matrix
・ Generalized Petersen graph
・ Generalized phrase structure grammar
・ Generalized Pochhammer symbol
・ Generalized Poincaré conjecture
・ Generalized polygon


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Generalized multivariate log-gamma distribution : ウィキペディア英語版
Generalized multivariate log-gamma distribution
In probability theory and statistics, the generalized multivariate log-gamma (G-MVLG) distribution is a multivariate distribution introduced by Demirhan and Hamurkaroglu in 2011. The G-MVLG is a flexible distribution. Skewness and kurtosis are well controlled by the parameters of the distribution. This enables one to control dispersion of the distribution. Because of this property, the distribution is effectively used as a joint prior distribution in Bayesian analysis, especially when the likelihood is not from the location-scale family of distributions such as normal distribution.
==Joint probability density function==
If \boldsymbol \sim
\mathrm\text\mathrm(\delta,\nu,\boldsymbol,\boldsymbol), the joint probability density function (pdf) of \boldsymbol=(Y_,\dots,Y_) is given as the following:
:f(y_1,\dots,y_k)= \delta^\sum_^\infty \frac^k \mu_i \lambda_i^}
\exp\bigg\^k \frac\exp\\bigg\},
where \boldsymbol\in \mathbb^, \nu>0, \lambda_>0, \mu_>0 for j=1,\dots,k, \delta=\det(\boldsymbol)^}, and
:
\boldsymbol=\left(
\begin
1 & \sqrt)} & \cdots & \sqrt)} \\
\sqrt)} & 1 & \cdots & \sqrt)} \\
\vdots & \vdots & \ddots & \vdots \\
\sqrt)} & \sqrt)} & \cdots & 1
\end
\right),

\rho_ is the correlation between Y_i and Y_j, \det(\cdot) and \mathrm(\cdot) denote determinant and absolute value of inner expression, respectively, and \boldsymbol=(\delta,\nu,\boldsymbol^T,\boldsymbol^T) includes parameters of the distribution.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Generalized multivariate log-gamma distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.